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Spectral Shock capturing Techniques

The effort to use spectral methods to simulate flows with shock waves
is summarized in four published papers. In (121) the authors study uniform
high order spectral methods to solve multi-dimensional Euler equations for
gas dynamics. Uniform high order spectral approximations with spectral ac-
curacy in smooth regions of solutions are constructed by introducing the idea
of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the
spectral methods. Based on the new approximations, nonoscillatory spectral
methods which possess the properties of both upwinding difference schemes
and spectral methods were proposed. Numerical results are presented for the
inviscid Burger's equation, and for one dimensional Euler equations irnclud-
ing the interactions between a shock wave and density disturbance, Sod's
and Lax's shock tube problems, and the blast wave problem. Finally, the
interaction between a Mach 3 two dimensional shock wave and a rotating
vortex is simulated.

In [3] we proved the existence of one-sided filters, for spectral Fourier ap-
proximations of discontinuous functions, which can recover spectral accuracy
up to the discontinuity from one side. We also used a least square proce-
dure to construct such a filter and test it on several discontinuous functions
numerically.

This paper was the prelude to the full solution of the Gibbs phenomenon,
the start of it given in the following two papers: It is well known that the
Fourier series of an analytic and periodic function,truncated after 2N + 1
terms,converges exponentially with N, even in the maximum norm. It is also

known that if the function is not periodic, the rate of convergence deterio-
rates;in particular, there is no convergence in the maximum norm,although
the functione is still analytic. This is known as the Gibbs Phenomenon. In [4]
we show that the first 2N + 1 Fourier coefficients contain enough information
about the function, so that an exponentially convergent approximation( in
the maximum norm) can be constructed. The proof is a constructive one and NTIS CRA&I)DTIC TAG I

makes use of the Gegenbauer polynomials C(7(x). It consists of two steps. In UnannotuceT
the first step we show that the first coefficients of the Gegenbauer expansion JtUstilcdtlo,,
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exponential accuracy, provided that both A and m are proportional to(but
smaller than N). In the second step we construct the Gegenbauer expansion
based on C'(x), from the coefficients found in the first step. We show that
this series converges exponentially with N, provided that the original function
is analytic (though periodic). Thus we prove that the Gibbs phenomenon can
be completely overcome. Further work had been done in [5]. In this paper
we discuss the wave-resolution properties of tie Fourier approximations of a
wave function with discontinuities. It is well known that a minimum of two
points per wave is needed to resolve a periodic wave function using Fourier ex-
pansions. For Chebyshev approximations of a wave function , a minimum of
points per wave is needed. Here we obtain an estimate for the minimum num-
ber of points per wave to resolve a discontinuous wave based on its Fourier
coefficients. In our recent work on overcoming the Gibbs phenomenon, we
have shown that the Fourier coefficients of a discontinuous function contain
enough information to reconstruct with exponential accuracy the coefficients
of a rapidly converging Gegenbauer expansion. We therefore study the reso-
lution properties of a Gegenbauer expansion where both the number of terms
and the order increase.
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Parallel Psuedospectral Methods

We v•ere concerned with the use of parallel computers for spectral meth-
ods. For that we have checked Domain Decomposition techniques. In [6] We
have outlined a methodology for parallizing spectral methods.The influencc
of interface boundary conditions on the ability to parallelize pseudospectral
multidomain algorithms is investigated. Using the properties of spectral ex-
pansions, a novel parallel two-domain procedure is generalized to an arbitrary
number of domains each of which can be solved on a separate processor.
This interface boundary condition considerably simplifies influence matrix
techniques.

These techniques had been improved in [7]. A domain decomposition
method is examined to find a time dependent parabolic equation. The
method employs an orthogonal polynomial collocation technique on multi-
ple subdomains. the subdomain interfaces arc approximated with the aid
of a penalty method. The time discretization is implemented in an ex-
plicit/implicit finite difference method. The subdomain interface is approx-
imated using an explicit Dufort Frankel method while the interior of each
subdomain is approximated using an implicit backwards Euler's method.
The principal advantage to the method is the direct implementation on a
distributed computing system with a minimum of interprocessor communi-
cation. Theoretical results are given for Legendre polynomials while compu-
tational results are given for Chebyshev polynomials. Results are given for
both a single processor computer and a distributed computing system.

In [8] a method is examined to approximate the interface conditions for
Chebyshev polynomial approximations to the solutions of parabolic prob-
lems, and a smoothing technique is used to calculate the interface conditions
for a domain decomposition method. The method uses a polynomial of one
less degree than the full approximation to calculate the first derivative so
that interface values; can be calculated by using only the adjacent subdo-
mains. Theoretical results are given for the consistency of the scheme and
practical results arc presented. Computational results are given for a fourth
order Runga-Kutta method in two dimentions and compuational results are
given for an explicit/explicit scheme in both one and two dimentions.
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Spurious Frequencies in Wake Flows

This is an example that a good computation can point out problems
in wind tunnel experiments. In [9] A detailed numerical study of two-
dimensional flow past a circular cylinder at moderately low Reynolds numbers
has been conducted using three different numerical algorithms for solving the
time-dependent compressable Navier-Stokes equations. It was found that if
the algorithm and associated boundary conditions were consistent and sta-
ble, then the major features of the unsteady wake were well predicted. How-
ever, it was also found that even stable and consistent boundary conditions
could introduce additional periodic phenomena riminiscent of the type seen
in privious wind -tunnel experiments. However, these additional frequen-
cies were eliminated by formulating the boundary conditions in terms of the
characteristic variables. An alalysis based on a simplified model provides an
explanation for this behaviour.

Further study of the effect of boundary conditions had been carried out
in [1]. The stability theory for finite difference Initial Boundary-Value ap-
proximations to systems of hyperbolic partial differential equations states
that the exclusion of Eigenvalues and generalized eigenvalues is a sufficient
condition for stability. The theory, however, does not discuss the nature of
numerical approximations in the presence of such eigenvalues. In fact, as
was shown previously [9], for the problem of vortex shedding by a 2-D cylin-
der in subsonic flow, stating boundary conditions in terms of the primitive
(non-characteristic) values may lead to such eigenvalues causing perturba-
tions that decay slowly in space and remain periodic time. Characteristic
formulation of the boundary conditions avoided this problem. In this paper,
we reported on a more systematic study of the behavior of the (linearizcd)
one-dimensional gas dynamic equations under various sets of oscillation -
inducing "legal" boundary conditions.
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Collocation methods based on Wavelets

We were the first to try to construct differentiation matrices by wavelets.
In [10] Lee Jameson discussed the notion of differentiation matrices. The
numerical solution of a partial differential equation requires an easily ma-
nipulated spatial approximation to the derivative of the unknown function
as well as some method to march forward in time. In general one starts
from given values of the unknown function, then a finite dimensional ap-
proximation, based on those values, is constructed. This approximation is
differentiated and the result are read at the gridpoints. For example,in the
psuedospectral Chebyshev method for the disretization of the equation

aU(X, t) aF[U(x, t)]
at 49X

One assumes that at a given time the values of U(xj, t) are given for some
points xi = cos(fj), (j = 0, N). Then one constructs the interpolation
polynomial through those points and differentiate this polynomial to get ap-
proximate values for 8F[U(x't)l at the point x,. this procedure can be viewed
as a transformation from N given values (of the function) to new N values
(approximating the derivative. This is the Chebyshev Differentiation Matrix.
The numerical algorithm therefore is simple and the boundary conditions can
be easily applied. It is natural to ask whether one gain by using wavelets
instead of Chebyshev polynomials. . Since wavelets are well localized func-
tions it is reasonable to conjecture that they might represent steep gradients
or the development of a shock with a relatively small number of terms. con-
sider a periodic function f(x) given on an equally spaced mesh. Expand it in
wavelet expansion and use the derivative of this expansion as an approxima-
tion to the derivative of f(x). Lee Jameson, has proved that approximation
of a periodic function f(x) in a wavelet basis and the differention of this
approximation yields nothing more than a finite difference approximation to
a derivative. The following is an outline of the proof:

i) Given a periodic function f(x) let -represent the periodic scaling func-
tion coefficients of this function on the finest scale. This requires approx-
imating the inner product of f(x) with the scaling function on the finest
scale. The matrix representation of this approximation is circulent in form:
C : f -+ .9, where f represents f(x) sampled on an evenly spaced grid.

6



ii) Let D be the mapping from the scaling function coefficients of f(x) to
the set of scaling function coefficients that represents the derivative of f(x):

D : ;--4 .4. Since f(x) is periodic then the matrix form of D is circulent in
form.

iii) All circulent martrices of the same size commute, therefore we can

apply the operator D directly to f. The operator D has the effect of a finite
difference operator, and the proof will be complete.

Therefore, the effect of first approximating in a wavelet basis, then differ-
entiating in this basis and finally converting back from the wavelet basis to
the original function is equal to applying the appropriate finite difference op-
erator directly to the equally spaced sampled values of the original function
f(x). The proof provides an insight into the possibility of using wavelets for
solutions of PDE's.

Wavelets while not more than known finite difference schemes
can provide a mechnism for automatic adaptation of the mesh.

In [1 an effort to use Galerkin procedure had been exemined for the
Bergers equation using wavelets based on splines.
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Study of High Order Finite Differences and Spectral Methods.
Several issues concerning the applications of high order methods were ex-

amined. In [121 we outlined the direction of the numerical si,,adations of the
nect decade and the typical problems associated with large scale computing.

In [13] we examined the way to impose compatibility conditions in Cheby-
shev methods. Often, in solving an elliptic equation with Neumann boundary
conditions, a compatability condition has to be imposed for well-posedness.
This condition involves integrals of the forcing function. When pseudospec-
tral Chebychev methods are used to discretize the partial differential equa-
tion, these integrals have to be approximated by an appropriate quadrature
formula. The Gauss-Chebychev (or any variant of it like the Gauss-Lobatto)
formula cannot be used here since the integrals under consideration do not
include the weight function. A natural candidate to be used in approximating
the integrals is the Clenshaw-Curtis formula; howeer, we show in this article
that this is the wrong choice and it may lead to divergence if time-dependent
methods are used to march the solution to sLeady state. We develop,in this
paper, the correct quadrature formula for these problems. This formula takes
into account the degree of the polynomials involved. We show that this for-
mula leads to a well conditioned Chebychev approximation to the differential
equations and that the compatability condition is automatically satisfied

In [14] We study the stability of spectral approximations to scalar hy-
perbolic initial-boundary value problems with variable coefficients. Time is
discretized by explicit multi-level of Runge-Kutta methods of order 3 (for-
ward Euler time differencing is included),and we study spatial discretizations
by spectral and pseudospectral approximations associated with the general
family of Jacobi polynomials. We prove that these fully explicit spectral
approximations are stable provided their time-step, , is restricted by the
CFL-like condition, k where N equals the spatial number of degrees of free-
dom. We give two independent proofs of this result, depending on two differ-
ent choices of appropriate -weighted norms. In both approaches, the proofs
hinge on a certain inverse inequality interesting for its own sake. Our result
confirms the commonly held belief that the above CFL stability restriction,
which is extensively used in practical implementations, guarantees the sta-
bility (and hence the convergence) of fully-explicit spectral approximations
in the non-periodic case.
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In [15] we discuss a new type of schemes: In a previous paper we have pre-
sented a new method of imposing boundary conditions in the pseudospectral
Chebyshev approximation of a scalar hyperbolic equation. The novel idea of
the new method is to collocate 'he equation at the boundary points as well
as in the inner grid points, using the boundary conditions as penalty terms.
In this paper we extend the above boundary treatment to the case of general
constant coefficients hyperbolic systems of equations, and we provide error
estimates for the pseudospectral Legendre method. The same scheme can be
implemented also in the general (even nonlinear) case.

In [16] A competitive algorithm, which allows the computation of approx-
iated polynomial solutions of advection-diffusion equations in the square,is
presented. The equation is collocated at a special grid and the correspond-
ing system is solved by a low-cost preconditioned iterative procedure. The
method provides accurate results even when the solution presents sharp
boundary-layers.

In [17] The authors examine psudospectral matrices.A standard way to
approximate the solution of differential problems by algebraic polynomials,
is to use collocation methods based on nodes related to Jacobi polynomials
such as Chebyshev or Legendre polynomials. The matrices corresponding
to the classical differential operators are known to be full, non-symmetric
and ill- conditioned. We examine those relative to the discretization of Neu-
mann problems in one space dimension. In particular, we are concerned with
their approximation properties, their eigenvalues and the possibility to find
appropriate preconditioners. Several choices are available when imposing
boundary conditions in the approximate problem. For instance, they can
be either directly enforced or imposed in a variational way. This results in
different behaviors, which can drastically affect the numerical effect of the
matrices. We analyze the different cases, pointing out the advantages and
drawbacks in using each strategy.

A particular attention is payed to the study of preconditioning matrices.

In [18] a polynomial approximation of functions of matrices is considered.
In solving a mathematical problem numerically, we frequently need to oper-
ate on a vector by an operator that can be expressed as f(A) ,where A is a
matrix [e.g. exp(A), A-] . Except for very simple matrices, it is impractical
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to construct the matrix f(A) explicitly . Usually an approzimation to it is
used. This paper develops an algorithm based upon a polynomial approxi-
mation to f(A). First the problem is ri,,diced to a problem of approximating
f(z) by a polynomial in z, where z belongs to a domain D in the complex
plane that includes all the eigenvalues of A. This approximation problem
is treated by interpolating f(z) in a certain set of points that is known to
have some maximal properties. The approximation thus achieved is "almost
best." Implementing the algorithm to some practical problems is described.
Since a solutio-. to a linear system, an iterative solution algorithm can be
based on a polynomial approximation to f. We r,'ve special attention to this
important problem.

In [19] We study several algorithms for computing the Chebyshev spec-
tral derivative and compare their roundoff error. For a large number of
collocation points, the elements of the Chebyshev differentiation matrix, if
constructed in the usual way,are not cc.nputed accurately. A subtle cause
is found to account for the poor accuracy when computing the derivative by
the matrix-vector multiplication method. Methods for accuracy computing
the elements of the matrix are presented and we find that if the entries of
the matrix are computed accurately, the roundoff error of the matrix- vec-
tor multiplication is as small as that of the transform-recursion algorithm.
Furthermore, results of the CPU time usage are shown for several differ-
ent algorithms for computing the derivative by the Chebyshev collocatit n
method for a wide variety of two dimentional grid sizes on both an IBM
mainframe and a Cray 2 computer. We find that which algorithm is fastest
on a particular machine depends not only on the grid size, but also on small
details of the computer hardware as well. For most practical grid sizes used
in computation, the even-odd decomposition algorithm is found to be faster
that transform-recursion method.

In 1201 The stability characteristics of various fourth- and sixth order
spacial operators are assessed using the theory of Gustafsson,Kreiss, and
Sundstrom(G-K-S) for the semi-discreet Initial Boundary Value PIoblem
(IBVP). These results are then generalized to the fully discreet case using
a recently developed theory of Kriess. In all cases, favorable comparisons
are obtained between G-K-S theory, eigenvalue detertaination, and numer-
ical simulation. The conventional definition of stability is then sharpened
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to include only those spr-ial discretizations that are asymptotically stable
(bounded, Left Hlalf P'lane eigenvalues). It is shown that many of tile higher-
order schemes which are G-K-S stable are not asymptotically stable. A series
of compact fourth an : sixth-order schemes, which are both asymptotically
Anld G-K-S stable for the scalar case, are then developed.
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Hierarchical optimization

Prof. Berger started to develope an optimization component in our pro-
gram. In [21] The idea of hierarchicalgradient methods for optimization is
considered. It is shown that the proposed approach provides powerful means
to cope with some global convergence problems characteristic to the classi-
cal gradient methods. Concerning global convergence problems, four topics
are addressed: The detour "effect" , the problem of multi-scale problems,
the problem of highly ill-conditioned objective functions, and the problem of
local-minima traps related to ambiguous regions of attractions.

The great potential of hierarchical gradient algorithms is revealed through
a hierarchical Gauss-Newton algorithm for unconstrained nonlinear least-
squares problems. The algorithm, while maintaining super-linear conver-
gence rate like the common conjugate - gradient or quasi-Newton methods.
requires the evaluation of partial derivatives with respect to ohmy one vari-
able on each iteration. This property enables economized consumption of
CPU time in case the computer codes for the derivatives are intensive CPU
consumers, e.g., when the gradient evaluations of ODE of PDE models are
produced by numerical differentiation.

The hierarchical Gauss-Newto- algorithm is extended to handle interval
constraints on the variables and its effectiveness demonstrated by computa-
tional results.

12



ENO schemes

In [22), we have performed a comprehensive numerical study regarding
the accuracy and convergence of ENO (essentially non-oscillatory) schemes
on model problems. We proposed a modified ENO scheme, with no additional
computational costs, which can enhance the accuracy in smooth regions. The
behavior of the modified ENO scheme near shocks is similar to the original
ENO schemes.

In [23], we have applied high order ENO schemes to two and three di-
mensional compressible Euler and Navier-Stokes equations. Practical issues,
such as vectorization, efficiency of coding, cost comparison with other nu-
merical methods, and accuracy degeneracy effects, are discussed. Numerical
examples are provided which are representative of computational problems
of current interest in transition and turbulence physics. These require both
non-oscillatory shock capturing and high resolution for detailed structures in
the smooth regions and demonstrate the advantage of ENO schemes.

In [24] we have proposed a new numerical approach to solve systems of
conservation laws of mixed hyperbolic-elliptic type, by a generalization of the
hyperbolic flux splitting methods. The possibly elliptic flux is split into a sum
of two hyperbolic fluxes with only positive/negative eigenvalues. Upwinding
hyperbolic solvers can thus be applied to each of them separately. Equipped
with time splitting this procedure is stable. Numerical results are shown
to illustrate the behavior of this method on the van der Waals equation in
gas dynamics. We observe convergence with good resolution to admissible
solutions containing phase transitions for Riemann problems. We also tested
more general initial conditions.

IL, [25], we discussed about a framework to use uniformly high order spec-
tral method for solving multi-dimensional Euler equations of compressible
flow. Uniform high order approximation with spectral accuracy in smooth
regions of the solution is coupled to a non-oscillatory shock transition through
the introduction of ENO interpolation idea into the spectral methods. The
proposed numerical procedure possesses the properties of both upwinding fi-
nite difference schemes and spectral methods. Test problems include Burgers
equations, one and two dimensional Euler equations including shock-vortex
and shock-wave interactions.

13



In [261, we discuss the application of high order compact finite difference
methods for shock calculations. The main idea is the definition of a local
mean which serves as a reference for introducing a local nonlinear limiting
to control spurious numerical oscillations while keeping the formal accuracy
of the scheme. For scalar conservation laws, the resulting schemes can be
proven total variation stable in one space dimension and maximum norm
stable in multi space dimensions. Numerical examples are shown to verify
accuracy and stability of such schemes for problems containing shocks.

In 127), we applied the discontinuous Galerkin finite element method (the
second order version) to 2D Euler equations of gas dynamics. Test problems
include the standard shock reflection, backward step problem, and double
Mach reflection. Different choices of limiters are explored.
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